Thermistor sample code for Arduino – Raspberry

This is a C++ class for a simple NTC thermistor. I used the thermistor included in the cooking-hacks.com starter kit (datasheet) and the cooking-hacks.com Raspebby to Arduino shield, but this sample is easily adaptable for any NTC thermistor or also for Arduino platform. It can be used with another NTC thermistor: simply change the BasicThermistor.h values:

  • BETA (o B-Value) : the beta value of thermistor
  • THERMISTOR: zero power resistance at 25° C
BasicThermistor schema

BasicThermistor schema

Some notes:

  • This class is designed for a read every 10 seconds.
  • Check the real value of 10k resistance with a multimeter! The 10% tollerance changes the value of about ± 1° C!. In my example I use 9840 Ω instead of 10000 Ω
  • I use a arithmetic mean over 12 readings (2 minutes) in order to normalize the temperature value and discard read errors
  • I use a simple “is_valid_value” function that discard a macroscopic read error. A “digital” read error of ± 20 is converted to an error of ± 14° C ! So if the previous valueis too big or too small, discard the current value

Header file – BasicThermistor.h

/*
 * BasicThermistor.h
 *
 * Created on: 07/ago/2013
 * Author: sarbyn
 * Website: http://www.sarbyn.com
 */
#ifndef BASICTHERMISTOR_H_
#define BASICTHERMISTOR_H_

#include "arduPi.h"
#include

/**
 * Based on cooking-hacks NTC thermistor - datasheet available at
 * http://www.cooking-hacks.com/skin/frontend/default/cooking/pdf/159-282-86001.pdf
 */

// The real 10k resistor value
#define TENKRESISTOR 9840.0f
// Thermistor beta value (from datasheet)
#define BETA 3950.0f
// The thermistor value at room temp (25 C)
// the original value was 2800 ohm
#define THERMISTOR 2700.0f
// The room temperature (25 C) in kelvin
#define ROOMTEMPK 298.15f

// Number of readings over which calculate
// the temperature
#define READINGS 12
// Delay (in ms) between Wire operations
#define DELAY_BETWEEN_OPERATION 20

// The digital value readed from ADC
// must be lower than DIGITAL_TOLLERANCE
// Otherwise it is treaded as a read error
#define DIGITAL_TOLLERANCE 20
// If the digital value readed from ADC is wrong for
// more than DIGITAL_TOLLERANCE_COUNTER, it is a correct value
// and so use it. This is used in case of sudden
// temperature change. If the temperature changes suddenly,
// the value is discarded for DIGITAL_TOLLERANCE_COUNTER reads. After that
// the value is accepted
#define DIGITAL_TOLLERANCE_COUNTER 6

#define ADC_I2C_ADDRESS 8

class BasicThermistor {
public:
   BasicThermistor(byte i2c_address, boolean debug_flag);
   float read_temperature();
private:
   byte address;
   boolean debug;
   int digital_value;
   float read_buffer[READINGS];
   unsigned int cached_digital_value;
   float temperature;
   int invalid_read_counter;
   int buffer_pointer;

   int read_digital_value();
   int is_valid_value(int value);
   float calc_temperature(int value);
};

#endif /* BASICTHERMISTOR_H_ */

Class file – BasicThermistor.cpp

/*
 * BasicThermistor.cpp
 *
 * Created on: 07/ago/2013
 * Author: sarbyn
 * Website: http://www.sarbyn.com
 *
 */

/**
 * Based on cooking-hacks NTC thermistor - datasheet available at
 * http://www.cooking-hacks.com/skin/frontend/default/cooking/pdf/159-282-86001.pdf
 */

#include "BasicThermistor.h"

// Costructor
BasicThermistor::BasicThermistor(byte i2c_address, boolean debug_flag) {
  address = i2c_address;
  debug = debug_flag;
  temperature = 0.0;
  cached_digital_value = 0;
  digital_value = 0;
  invalid_read_counter = 0;
  buffer_pointer = 0;

  for (int i = 0; i < READINGS; i++) {
    read_buffer[i] = -1.0f;
  }
}
// Read the digital value from ADC using Wire class
int BasicThermistor::read_digital_value() {
  unsigned char val_0 = 0;
  unsigned char val_1 = 0;
  unsigned int digital_value;
  Wire.beginTransmission(ADC_I2C_ADDRESS);
  Wire.write(address);
  // sleep in order to reduce read error
  delay(DELAY_BETWEEN_OPERATION);
  Wire.requestFrom(ADC_I2C_ADDRESS, 2);
  // sleep in order to reduce read error
  delay(DELAY_BETWEEN_OPERATION);
  val_0 = Wire.read();
  // sleep in order to reduce read error
  delay(DELAY_BETWEEN_OPERATION);
  val_1 = Wire.read();
  // sleep in order to reduce read error
  delay(DELAY_BETWEEN_OPERATION);
  digital_value = int(val_0)*16 + int(val_1>>4);

  if (debug) {
    printf("[BT] val [%2x,%2x]\n", val_0, val_1);
    printf("[BT] Read digital value %d\n", digital_value);
  }
  return digital_value;
}

// Check if the readed value is valid
int BasicThermistor::is_valid_value(int value) {
  if (cached_digital_value == 0) {
    cached_digital_value = value;
    return 1;
  }

  // check against DIGITAL_TOLLERANCE
  if (abs(cached_digital_value - value) < DIGITAL_TOLLERANCE) {
    if (debug) printf("[BT] Valid digital value %d\n", value);
    cached_digital_value = value;
    invalid_read_counter = 0;
    return 1;
  }
  if (invalid_read_counter > DIGITAL_TOLLERANCE_COUNTER) {
    // too many invalid readings ---> this is a valid read
   if (debug) printf("[BT] Too many invalid digital value %d..so use it\n", value);
   cached_digital_value = value;
   invalid_read_counter = 0;
   return 1;
 }

  // throw away invalid reading
  invalid_read_counter++;
  if (debug) printf("[BT] Invalid digital value %d\n", value);
  return 0;
}

// Convert the ADC value to Celsius Temperature
float BasicThermistor::calc_temperature(int value) {
  // convert value
  float analog_value = value * 1023.0 / 4095.0;

  analog_value = (1023 / analog_value) - 1;
  analog_value = TENKRESISTOR / analog_value;
  analog_value = analog_value / THERMISTOR;

  if (debug) printf("[BT] Analog value %f\n", analog_value);

  float kelvin = log(analog_value);
  kelvin /= BETA;
  kelvin += 1.0 / ROOMTEMPK;
  kelvin = 1.0 / kelvin;

  return kelvin - 273.15;
}

// Main read function: read the current temperature and return it.
// This is designed for a read every 10 seconds: it collects 12 readings
// (READINGS macro value, 2 minutes) and calculate mean over all the values.
// In this way the temperature value does not change suddenly and
// become more stable
float BasicThermistor::read_temperature() {
  digital_value = read_digital_value();
  float single_temperature;
  if (is_valid_value(digital_value)) {
    single_temperature = calc_temperature(digital_value);
    if (debug) printf("[BT] Single current temperature is %f\n", single_temperature);
  } else {
    single_temperature = calc_temperature(cached_digital_value);
    if (debug) printf("[BT] Invalid temp, using cached value %f\n", single_temperature);
  }

  if (debug)
    printf("[BT] Storing the temp at pointer %d\n", buffer_pointer);

  read_buffer[buffer_pointer] = single_temperature;
  buffer_pointer++;

  if (read_buffer[buffer_pointer] == -1.0f) {
    // this is the first reading....init the buffer
    for (int i = buffer_pointer; i < READINGS; i++) {
      read_buffer[i] = single_temperature;
    }
  }

  // reset the pointer
  if (buffer_pointer == READINGS) buffer_pointer = 0;

  temperature = 0;

  if (debug) {
    printf("[BT] Temp. buffer[");
    for (int i = 0; i < READINGS; i++) {
      printf("%0.1f,", read_buffer[i]);
    }
    printf("]\n");
  }

  for (int i = 0; i < READINGS; i++) {
    temperature += read_buffer[i];
  }

  temperature /= READINGS;

  return temperature;
}
 

sarbyn

 

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.